AI and Healthcare Delivery: Navigating the Clinical Reality and Expectations

March 26, 2024
Speakers

Keith Horvath, MD
Senior Director, Clinical Transformation
AAMC

Mary Kate Selling, MHA
Executive Director, Clinical Data and Analytics
UChicago Medicine

Shakaib Rehman, MD, MACP, FACH, FEACH, FAMIA, CSH
Chief of Education, Phoenix VA Health Care Systems
Professor & Chair, Department of Biomedical Informatics
University of Arizona College of Medicine-Phoenix

Tauhid Mahmud, MD, MPH
Clinical Assistant Instructor
Department of Family, Population and Preventive Medicine
Stony Brook University
AI & Healthcare Delivery: Navigating the Clinical Reality and Expectations

Shakaib Rehman, MD, SCH, MACP, FACH, FAMIA
Associate Chief of Staff for Education, Phoenix VA Healthcare Systems
Professor and Chair of Department of Biomedical Informatics,
University of Arizona College of Medicine-Phoenix
Shakaib.rehman@va.gov
@ShakaibMD
Disclosures

- Dr. Rehman has funding for research studies by VA and NIH

- Opinion expressed in this presentations are not official statements of the Department of Veterans Affairs or Federal Government but only represent Dr. Rehman’s view

- AI is not utilized for the preparation of this presentation
ChatGPT (Chat Generative Pre-trained Transformer), OpenAI’s chatbot powered by artificial intelligence (AI), has become the fastest-growing Internet application in history

Hu K. ChatGPT sets record for fastest-growing user base — analyst note. Reuters. February 2, 2023
Doom and Gloom

- “Hallucination”
- Implications for patient privacy
- Risk of biases (due to faulty source data)
- Tesla Crashed to autopilot features
- Microsoft’s AI chatbot turned sexist & racist
- Amazon’s AI recruiting tool showed bias against women
- False facial recognition match leads to Black man’s arrest

AI Gone Wrong: 5 Biggest AI Failures Of All Time - Jumpstart Magazine
Doom and Gloom

- “The end of the college essay,” and medical school personal statements.

- Chatbots intended to replace physicians for some medical encounters will imminently be commercially available.
Major health care companies are partnering with technology firms to deploy AI widely and rapidly throughout the U.S. health care system, including by integrating it into electronic health records and voice-recognition software.
We, the medical education as a system, should lead the way when it comes to integrating AI into clinical practice, teaching and research.
Examples of AI Uses

- Online Scheduling/Registration/Payment/Check-in
- Chatbots
- Symptom Triage
- Wait-time estimations
- Video Visits
- AI Enabled Medical Coding
- AI built to forecast demand on facilities Supplies, staffing
- Prior Authorizations
AI Applications

- Facilitate Diagnosis
- Predict Pathology
- Risk Stratify Patients
- Enhance Practice Management
- Imaging Applications (prosthetics, surgical planning, disease predicting)
- Enhancing Surgical Aide
VA’s health care professionals provide lifesaving and life-changing care for Veterans every day.

Reducing burnout among health care workers is a top priority for VA, especially at a time when VA is delivering more care and more benefits to more Veterans than ever before.

The **Tech Sprint** is a part of President Biden’s new executive order on safe, secure, and trustworthy artificial intelligence.

And VA’s efforts to use **trustworthy AI solutions** to improve health care and benefits for Veterans, their families, caregivers, and survivors.
These AI scribes will *listen in* to the conversation, and piece together the note but also suggest billing codes, diagnoses, and orders based on where conversation goes. This takes Clinical Decision Support (CDS) to another level.

The Ambient Dictation for Clinical Encounters track focuses on speech-to-text solutions that can be used to automatically take notes for both the doctor and their patient and upload key excerpts to medical files.
The Community Care Document Processing track looks for an AI tool that can reduce the time needed to integrate non-VA medical records into patients’ VA records in an easy to access way.
GI Genius

- An FDA-approved system that aids in detecting concerning polyps during colonoscopies, leading to a 50% reduction in missed colorectal polyps compared to standard procedures.

- The VA has deployed these cutting-edge artificial intelligence devices for over 100,000 colonoscopies at 106 facilities to improve the detection and removal of precancerous polyps.

- VA funded purchases of GI Genius at an approximate cost of $19 million over the past few years, with deployment targeted to complete by the Fall of CY24.
REACH VET initiative uses AI to identify Veterans who are in the top risk tier of predicted risk for suicide.

- **REACH VET** reviews data from the prior two years of VHA health care services to identify at-risk Veterans.
- Since the program began in 2017, REACH VET has identified more than **117,000** VHA patients.
REACH VET

• Consistent monitoring of performance indicators show that evaluation and outreach occur for almost all of these patients.

• Inclusion in REACH VET is found to be associated with improved suicide prevention.
Improved Suicide Prevention

- These improvements include
 - Increased receipt of completed outpatient appointments,
 - Fewer documented suicide attempts,
 - Fewer inpatient mental health admissions,
 - Fewer emergency department days
 - And greater completion of new suicide prevention safety plans.
Medical students are already starting to apply AI in their learning.

Faculty are contemplating how AI can help them design courses and evaluations.

Cooper, Avraham; Rodman, Adam. *AI and Medical Education — A 21st-Century Pandora’s Box*. N Engl J Med 2023; 389:385-387
UME’s Dual Challenge

- **Teach** students how to utilize AI in their practice
- **Adapt** to the emerging academic use of AI by students and faculty.

Medical school curriculum **built by humans** is now in doubt:

- How will a medical school provide **quality control** for components of its curriculum that didn’t originate from a human mind?
- How can schools maintain academic standards if **students use AI** to complete assignments?

Cooper, Avraham; Rodman, Adam. *AI and Medical Education — A 21st-Century Pandora’s Box*. N Engl J Med 2023; 389:385-387
Incorporating Didactics on the Use of AI into Clinical Skills

- Curricular standards to integrate AI?
- AI Generated Curriculum?
- Shouldn’t these then be rigorously assessed, peer-reviewed and published?

Graduate Medical Education (GME)

- Prepare for a future in which AI tools are integral components of their independent practice.

- Residents and fellows have 30 to 40 years of practice ahead of them and will need to adjust to evolutions in clinical care.

- Trainees will have to become comfortable working with AI and will have to understand its capabilities and limitations, both to support their own clinical skills and because their patients are already using it.
AI-Powered Patients

- ChatGPT can produce advice on cancer screening in patient-friendly language, though not with 100% accuracy.

- Will AI powered patients start a revolution of the patient–doctor relationship?
Accreditation Council for Graduate Medical Education

- Currently have no formal policies on AI
- AI education into common program requirements?
- Which would compel programs to make changes to their training approaches.
AI and Governance
Governance Structure

Data and Analytics Steering Committee
(Strategic Decision Making, Prioritization, & Vision)

Data Governance Council
(Policies, Procedures, Standards & Guidelines)

AIU

AI Governance
Analytics Intervention Unit (AIU) Goals

1. **Optimize clinical outcomes** through the implementation of predictive tools that have clear clinical and operational interventions through application of model data.

2. **Identify clear priority areas** for the medical center where predictive analytics may enhance decision-support.

3. **Support collaboration** among clinical, research, administrative and ancillary support staff across the health system and university, in the development, evaluation and deployment of predictive analytic initiatives.

4. **Serve as a valuable resource** to model developers and provide expertise in clinical informatics, data science, and health system technology/architecture.

5. **Deliver safe and effective** predictive software functionality that improves the patient care.

6. **Develop and refine evaluation criteria** for models entering hospital operations.

7. **Monitor and ensure** data utilized for each model in UChicago Medicine production is validated on an on-going basis.

8. **Serve as a national leader** in predictive model planning, development and deployment in healthcare delivery.
AIU Scope

• Provides subject matter expertise
• Provides strategic direction and operational support for all predictive and interventional models that impact patient care from development to deployment
• Is an advisory body, but it is empowered to reject unsafe models

Inclusion:
» Predictive tools including, but not limited to, those that treat, diagnose, cure, mitigate, or prevent disease or other conditions
» All predictive and prescriptive tools intended for implementation at UChicago Medicine to support healthcare delivery
» Models that align with patient quality of care and patient safety goals

Exclusion:
» Models without a direct patient care component
» Research models that will not be implemented for patient care
AIU Membership

Core (~10 people)
- Clinical Operations
- Data Analyst/Scientist
- IT Systems Engineer
- Frontline Staff
- Diversity, Equity & Inclusion

Ad-hoc
- Operations Unit / SME
Where do AI tools come from?

Buy, Partner, or Build?
Accounting for the Limitations of AI

- Understanding training sets of models
- Testing for bias
- Continuously validating outcomes
Model Life Cycle

Submit Model Intake Form → Prioritization → Source & Develop → Validate → Deploy → Monitor

Analytic Interventions Unit Intake Form

Validation of the Operating Room Nurse Assignment Model

This version: May 26, 2021

Teaming scores
The correlation between teaming scores and operative performance metrics (e.g., operative time) was validated by a Booth student project team in 2014 and documented in a Booth working paper "Surgeon-Nurse Teaming Effects on Efficiency and Length of Stay." 2017, by Feng, Yang, Ronica, Adelman, and Leuenerman. The relationship between teaming...
Example: Validation of 6-month mortality model

- Model development internally in collaboration with the Palliative Care group to predict the probability of patient mortality within 6 months
- Updating existing model, as previous model trained before COVID and before system expansion

<table>
<thead>
<tr>
<th>Validation Check</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparing Train and Test</td>
<td>Hospital data can have time dependence therefore check that features appear similarly in the train and test data.</td>
</tr>
<tr>
<td>Trends in False Negatives</td>
<td>For this model minimize false negatives (model predictions that a patient will live but they die within 6 months). Reviewed characteristics of those patients to ensure no bias.</td>
</tr>
<tr>
<td>Specificity in Imputed Lab Values</td>
<td>Model inputs cannot have missing values so missing values are imputed (typically using mean or median). However for lab values the population mean or median may have a bias based on the motivation for the order. Analysis validated imputed lab values where within normal reference range.</td>
</tr>
<tr>
<td>Percentage of Missing Values</td>
<td>The percentage of encounters with missing values for each feature was made. This is especially important to track over time (ex: Sunquest to Beaker lab system change).</td>
</tr>
<tr>
<td>Comparison to eCART</td>
<td>Compared scores and outcomes against eCART, which identifies patient deterioration within the encounter.</td>
</tr>
<tr>
<td>New Context</td>
<td>Evaluated if a Covid-flag would improve results. It is important to consider other model features based on new external factors (ex. Covid) or new clinical markers that may increase the model performance.</td>
</tr>
</tbody>
</table>
Focus for 2024

Governance and increased transparency
- Develop procedures and standards for each model work flow step
- Example: Documentation standards for model validation

Implement a central model monitoring system
- Collaboration with data science, business intelligence, analytics engineering, UCMIT

Demonstrated experience: Metric monitoring for CE Scorecard
<table>
<thead>
<tr>
<th>Stage</th>
<th># of models</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>In queue</td>
<td>5</td>
<td>• Scheduling Template (IVTH Silver Cross, IVTH River East)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Total Joint Arthroplasty Risk Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lab Draws</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Epic Falls Model for Ingalls</td>
</tr>
<tr>
<td>In development or validation</td>
<td>3</td>
<td>• Scheduling Template IVTH DCAM re-optimization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 6-month mortality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No Show</td>
</tr>
<tr>
<td>In production</td>
<td>14</td>
<td>• Orland Park Infusion Scheduling Template</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Acute Stroke Risk Predictor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AKI Risk Algorithm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• eCART</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IVTH DCAM Infusion Scheduling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• HOSPITAL score</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Epic General Risk Score</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Epic Fall Risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Peds Nationwide Sepsis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 6 month mortality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chorio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Re-hospitalization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Oncology Readmission Risk Score</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• pCART</td>
</tr>
<tr>
<td>Turned off</td>
<td>5</td>
<td>• Operating Room Nurse Assignment Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MRI Scheduling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Epic Remaining Length of Stay (LOS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Internal Length of Stay (LOS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LACE+</td>
</tr>
</tbody>
</table>
AI in Medical Education

- FY25 Initiatives:
 - Ambient Listening
 - Template standardization for documentation
Appendix
Process Map

Submit AIU Model Intake Form

Is this a Priority for the health system

Submit Completed Model Deployment Form

Does this model need to be built by AIU

Does this meet AIU Validation Standards

Build Model

Does model meet validation in Epic silent production

Live Model

Stakeholder & small AIU meeting

Set expectations and/or PAUSE

no yes

no yes

no yes

no yes

no yes

no yes

 Does model meet AIU Validation Standards

Does this pass Monitor / Impact Standards

Turn Off Model

Stakeholder & AIU meeting to determine next steps

KEY
Green: Submit Form
Blue: AIU Meeting
Red: Hold/Stops
Gold: Live
Model Deployment Process

<table>
<thead>
<tr>
<th>Intake; Determine and Align on Clinical Priorities</th>
<th>Source and Develop (for models that have not yet been built)</th>
<th>Review and Validate</th>
<th>Test, Deploy and Communicate</th>
<th>Monitor Results and Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify areas of need / priority where predictive data may provide clear steps for clinical intervention</td>
<td>Identify external sources for model procurement or development OR Develop model internally with UCM data</td>
<td>Review the scientific validity and operational value of each model to be implemented Provide feedback and acceptance, rejection or concerns for deployment</td>
<td>Conduct integration / interface development Validate within Epic or other deployment system Identify appropriate security and access Shift model to full production Training and communication to stakeholders</td>
<td>Track on-going results and clinical effectiveness metrics Conduct periodic review and evaluation of clinical outcomes as a result of predictive data</td>
</tr>
</tbody>
</table>
AI: The Resident Perspective

Tauhid Mahmud MD MPH
Stony Brook Medicine
Disclosures

I have no actual or potential conflict of interest in relation to this program/presentation.
Agenda

Resident Levels of Engagement

Incorporating AI into Medical Education

Final Thoughts
Levels of AI Engagement

Observers
- Peripherally aware of AI and institutional AI initiatives
- Some firsthand experience with AI tools

Adopters
- Use AI-powered tools for tasks such as patient education, lab order templates, and drafting letters
- Pragmatic approach to incorporating AI into their work

Innovators
- Participate in research projects to develop and validate new AI models
- Provide clinical expertise to inform the development of AI algorithms
- Advocate for the use of AI in their specialty and educate peers on potential applications
Ambient AI Scribe Initiative

Annual Family Medicine Update
Levels of AI Engagement

<table>
<thead>
<tr>
<th>Observers</th>
<th>Adopters</th>
<th>Innovators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripherally aware of AI and institutional AI initiatives</td>
<td>Use AI-powered tools for tasks such as patient education, lab order templates, and drafting letters</td>
<td>Participate in research projects to develop and validate new AI models</td>
</tr>
<tr>
<td>Some firsthand experience with AI tools</td>
<td>Pragmatic approach to incorporating AI into their work</td>
<td>Provide clinical expertise to inform the development of AI algorithms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advocate for the use of AI in their specialty and educate peers on potential applications.</td>
</tr>
</tbody>
</table>
Prev Med Board Buddy

By Tashid Mahmud

An assistant for ACPM board exam prep, clarifying concepts and offering study strategies.

Quiz on epidemiology topics. Quiz on USPSTF Guidelines
Motivational Interviewing Cases Quiz on OPSTF Guidelines

Prev Med Board Buddy

Subject: Understanding Fluid Restriction in CHF Exacerbation

Dear [Patient’s Name],

I hope this message finds you well. I am writing on behalf of Dr. [Doctor’s Name] to explain why we can’t provide you with excess fluids during an exacerbation of your Congestive Heart Failure (CHF).

In CHF, your heart struggles to pump blood efficiently, which can lead to buildup of fluid in your body, especially in the lungs and lower extremities. This excess fluid can worsen your symptoms, leading to difficulty in breathing, swelling (edema), and other complications.

During a CHF exacerbation, your condition becomes more unstable, and it is crucial to carefully manage your fluid intake to prevent further strain on your heart. Providing additional fluids during this time could exacerbate your symptoms and potentially lead to a serious condition known as acute pulmonary edema, which can be life-threatening.

We understand that this may be challenging, but it is an essential part of managing your condition. We recommend you to adhere to the prescribed fluid restriction, take your medications as directed, and monitor your weight daily.

Please do not hesitate to contact us if you have any questions or concerns. Your health and well-being are our utmost priority.

Best regards,

Tashid Mahmud, MD.
<table>
<thead>
<tr>
<th>Levels of AI Engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observers</td>
</tr>
<tr>
<td>Peripherally aware of AI and institutional AI initiatives</td>
</tr>
<tr>
<td>Some firsthand experience with AI tools</td>
</tr>
<tr>
<td>Adopters</td>
</tr>
<tr>
<td>Use AI-powered tools for tasks such as patient education, lab order templates, and drafting letters</td>
</tr>
<tr>
<td>Pragmatic approach to incorporating AI into their work</td>
</tr>
<tr>
<td>Innovators</td>
</tr>
<tr>
<td>Participate in research projects to develop and validate new AI models</td>
</tr>
<tr>
<td>Provide clinical expertise to inform the development of AI algorithms.</td>
</tr>
<tr>
<td>Advocate for the use of AI in their specialty and educate peers on potential applications.</td>
</tr>
</tbody>
</table>
The Role of Natural Language Processing in Primary Care: A Scoping Review

Contributors: Tauhid Mahmud, Laurel Scheinfeld, Lyncean Ung, Jonathan Ambut, Dipika Rana, Tejas Patel, Sridha Rajupet
Date created: 2023-12-12 09:40 PM | Last Updated: 2024-02-09 10:23 PM
Create DOI
Category: Project
Description: Scoping review focused on the intersection of natural language processing and primary care.
License: Add a license

Primary research question(s)
What is the scope of research on the application of NLP technologies in primary care settings, and what are the key themes and methodologies identified in this body of literature?

Type of review
The proposed scoping review will be conducted in accordance with the Joanna Briggs Institute (JBI) methodology for scoping reviews and presented in the format as suggested by P...

Additional Projects:

- Utilizing natural language processing models for radiology reports
- Thinking through clinical AI infrastructure on new databases
- Comparing AI readouts to academic reviewers of journal articles
Incorporating AI into Medical Education

• Premed
 • Undergraduate and graduate degree students are already regularly engaging with AI
 • Personal statement writing
 • Interview preparation

• Medical Schools
 • University of Texas: Doctor of Medicine (M.D.) and Master of Science in Artificial Intelligence (M.S.A.I.) will form a five-year M.D./M.S.
 • Students are building tools

Incorporating AI into Medical Education

Graduate Medical Education
- Morning Report / Noon Lectures
- Conferences
- Online workshops and webinars
- Research Electives with Informatics Department
- Review Articles
- Model building
ARTICLE IN PRESS

Radiologic Resident Education

AI-RADS: An Artificial Intelligence Curriculum for Residents

Alexander L. Lindqwister, Saeed Hassanpour, Petra J. Lewis, Jessica M. Sin

Rationale and Objectives: Artificial intelligence (AI) has rapidly emerged as a field poised to affect nearly every aspect of medicine, especially radiology. A PubMed search for the terms “artificial intelligence radiology” demonstrates an exponential increase in publications on this topic in recent years. Despite these impending changes, medical education designed for future radiologists have only recently begun. We present our institution’s efforts to address this problem as a model for a successful introductory curriculum into artificial intelligence in radiology titled AI-RADS.

Materials and Methods: The course was based on a sequence of foundational algorithms in AI; these algorithms were presented as logical extensions of each other and were introduced as familiar examples (pam filters, move recommendations, etc.). Since most trainees enter residency without computational backgrounds, secondary lessons, such as pixel mathematics, were integrated in this progression. Didactic sessions were reinforced with a concurrent journal club highlighting the algorithm discussed in the previous lecture. To circumvent often intimidating technical descriptions, study guides for these papers were produced. Questionnaires were administered before and after each lecture to assess confidence in the material. Surveys were also submitted at each journal club assessing learner preparedness and appropriateness of the article.

Results: The course received a 9.8/10 rating from residents for overall satisfaction. With the exception of the final lecture, there were significant increases in learner confidence in reading journal articles on AI after each lecture. Residents demonstrated significant increases in perceived understanding of foundational concepts in artificial intelligence across all mastery questions for every lecture.

Conclusion: The success of our institution’s pilot AI-RADS course demonstrates a workable model of including AI in resident education.

Key Words: Artificial intelligence; Education; Residency training; Machine learning; Radiology.

© 2020 Published by Elsevier Inc. on behalf of The Association of University Radiologists.

Abbreviations: AI Artificial Intelligence, ML Machine Learning
AI-RADS Curricula Outline

This 7 lecture series covered seven seminal algorithms in artificial intelligence. Each lecture was mapped to a secondary computational lesson. Lectures were designed to build upon each other in a logical progression with recurring concepts and themes.

1. Naive Bayes
2. K-Nearest Neighbor
3. K-Means
4. Random Forest
5. The Perceptron
6. Support Vector Machines
7. Neural Networks

Figure 2. Curriculum. Overall AI-RADS course objectives.
Future Direction

Regardless of the level of engagement, trainees are considering the role of AI in their clinical future.

Institutions should meet trainees and learners where they are to promote AI engagement.

“It is clear to me that AI will never replace physicians — but physicians who use AI will replace those who don’t.”- Dr Jesse Ehrenfeld, AMA President
Thank you

Tauhid Mahmud MD MPH
Tauhid.mahmud@stonybrookmedicine.edu
Thank you!
Upcoming AAMC AI Webinars

• Leveraging AI in Teaching & Evaluation – April 30, 2024

Past AAMC AI Webinar

AI in Medical Education: Using the Missions of Medical Education as a Guide – January 2024

Building Trust & Transparency in the Age of AI: Behind the Data Curtain – February 2024

• Video recording
• Presentation slides
• Q&A section summary

Register for the monthly series!
And find resources from past webinars.
Scholarly Publishing Webinar Series

Improve your writing and learn how to successfully navigate the peer-review and publication processes

- Register for upcoming sessions
- View the recording, slides, and key takeaways from past sessions

aamc.org/publishingwebinar

Hosted by Academic Medicine & MedEdPORTAL
Submit, read, and learn more at mededportal.org

Follow us on @MedEdPORTAL

MEDLINE-indexed journal

Open access: No fees to submit, publish, or download. All materials are immediately available upon publication

Author support: Creates access avenues for diverse scholars, including trainees and faculty historically underrepresented in medicine
Connect Beyond the Pages of Academic Medicine

@AcadMedJournal

Academic Medicine Journal

academicmedicineblog.org

Academic Medicine Podcast
Get involved, advance your career, help move the field of medical education forward

aamc.org/about-us/mission-areas/medical-education
The AAMC Curricular Resources & MedBiquitous are collecting feedback from the health professions community regarding the standardized vocabulary for instructional methods, assessment methods, and resources.

Educational Methods Feedback Form Now Open!
Artificial Intelligence
Learn from Experts & Engage with Colleagues

Check out our …
- Webinar series
- Key resources collection
- Discussion threads

Check out our …
- AI and Academic Medicine webpage

© AAMC
Join the AAMC Communities

Engage with colleagues through discussion threads, access useful resources, and network with peers on topics of interest in this free virtual communities network

communities.aamc.org
FIRST Program
Financial Information, Resources, Services, and Tools

Information and guidance about paying for medical school, managing money, and successfully repaying student loans

- Assistance with navigating the complexities of paying for medical school.
- Resources & tools to expand financial literacy skills & knowledge of money management topics.
- Strategies to wisely manage student loan debt.
- Education & support through onsite & virtual school sessions, webinars, publications & more.

aamc.org/first
Interested in launching a strategic planning process or enhancing alignment between your research, education, and health care delivery missions? Explore Member Organization Solutions and the Aligned Institutional Mission Program.

Gain the Resources and Expertise to Achieve Organizational Transformation and Alignment

Learn more
• aamc.org/mos
• aamc.org/aim
Choosing a specialty is one of the most significant decisions students will make.

We can help with resources for students and advisors.
AAMC StandPoint Surveys: 2023 State of Medical School Faculty Engagement – Now Available

Gain key insights into the most salient issues affecting faculty engagement in academic medicine, using data collected from ~ 18K full- & part-time faculty between January 2020 & December 2022.

Download your copy today.

aamc.org/facultyengagementreport