

AAMC GIP Data and Information Subcommittee

Pam Bounelis, PhD
National Chair Elect, AAMC Group on Institutional Planning
University of Alabama at Birmingham

Association of American Medical Colleges

Members

- 145 accredited US medical schools
- 17 accredited Canadian medical schools
- ~400 teaching hospitals/health systems including
 - >50 VA medical centers
- >80 academic societies

Represents

- 148,000 faculty
- 83,000 medical students
- 115,000 resident physicians

AAMC – 23 Affinity Groups

AAMC Association of American Medic	al Colleges		AAMC.org AAMC for Students, Applicants, and Residents Government Affairs Newsroom Meetings Publications			
Initiatives	Data and Analysis	Services	Member Center	About Us		
★ Member Center Home Councils and Organizations >	Professional Development Groups ≽	Group on Business Affairs (GBA)	Graduate Research, Education, and Training	Group on Research Advancement and		
Council of Deans (COD)	Chief Medical Officers Group (CMOG)	Group on Diversity and Inclusion (GDI)	(GREAT) Group Group on Institutional	Development (GRAND) Group on Resident Affairs (GRA) Group on Student Affairs		
Council of Faculty and Academic Societies (CFAS)	Compliance Officers' Forum (COF)	Group on Educational Affairs (GEA)	Advancement (GIA) Group on Information			
Organization of Resident Representatives (ORR)	Forum on Conflict of Interest in Academe (FOCI Academe)	Group on Faculty Affairs (GFA)	Resources (GIR) Group on Institutional	(GSA) Group on Women in Medicine and Science (GWIMS)		
Organization of Student Representatives (OSR)	Government Relations Representatives (GRR)	Group on Faculty Practice (GFP)	Planning (GIP) Group on Regional Medical			
Council of Teaching Hospitals and Health Systems (COTH)	. top. sociitatives (Griff)	(5)	Campuses (GRMC)			

AAMC Data Resources

Types of Data

Medical school revenues

Faculty and student demographics

Compensation comparisons

Ad hoc data requests

https://www.aamc.org/data/

Data access

- Available by role/permission
- Dean's office
- AAMC Staff
- GIP

Compensation by Department, PhD Faculty, Combined Ranks (\$ in Thousands)									
	FY15		FY14		FY13		% Change FY14-FY15		
	Mean	Median	Mean	Median	Mean	Median	Mean	Median	
All Basic Sciences	134.8	122	131.9	119	129.3	117	2.2	2.5	
Pharmacology	132.9	119	131.3	118	129.4	117	1.2	8.0	

Source: AAMC Faculty Salary Survey Report, Table 33, accessed 01/27/16

AAMC Programs and Publications

Programs

Leadership programs

Mentoring programs

Meetings on specific topics

Seminars and webinars

Publications

Academic Medicine

Analysis in Brief

Washington Highlights

Special reports

April 1-2, 2016 more information

Executive Development Seminar for Aspiring Leaders April 28-30, 2016, AAMC Learning Center, Washington, D.C.

Coming in March

Leadership Guide for Department Chairs

AAMC Group on Institutional Planning

Mission: "to advance the discipline of planning in academic medicine by enhancing the skills and knowledge of professional planners; to promote the value of planning; and to connect people, resources, and ideas."

- Diverse membership
- Active listserve
- Sponsor symposia, workshops, and webinars
- Provide data and resources
 - Sustainability
 - Strategic planning
 - Emergency planning

What We Wanted to Learn

- Should our expectations (metrics) be the same for "wet" vs. "dry" research spaces?
- Are there comparative space metrics available?
- What components are included in comparative space metrics?

Why Does This Matter to Us?

- Improves decision-making to support priorities
 - Renovate, reuse, re-allocate
 - Build, rent
 - Sell, lease, demolish
- Improves resource utilization
 - Support research programs, faculty, trainees
 - Reduce costs
- Promotes transparency and fairness
 - Setting expectations

Why Might This Matter to You?

- You probably have authority and responsibility
- Supports transparency and equity
 - Setting expectations for faculty
 - Comparisons to other departments
- Improves negotiating ability
 - Recruits

- Dean's office
- Promotes stewardship and sustainability

Hypothesis

1

Space dollar densities are calculated similarly at different schools

Our GIP Subcommittee Approach

Eric W Boberg, PhD
Executive Director for Research
Northwestern University
Feinberg School of Medicine

What We Learned: Different Types of Space Metrics In Use

- Dollar density:
 surrogate measure for activity
 - Awards/ net square feet
 - Indirect expenses/square feet
- People density:
 surrogate measure for occupancy
 - FTE/net square feet
 - Person per kneehole/desk

What We Worry About: Internal Misalignment in Dollars and NSF

Eric's Idea: If We All Have the Same Data, Will We Use It the Same Way?

- Created a fictitious department of 10 faculty
- Each faculty described in terms of
 - Personnel
 - Grant awards
 - Expenditures
 - Assigned space
 - Shared space
- Participants asked to calculate space utilization value based on current practices

GIP Data & Information Subcommmittee Participants

Eric Boberg, PhD	Northwestern University, Feinberg				
Pam Bounelis, PhD (Chair)	University of Alabama at Birmingham				
Matthew Darring	University of Virginia				
Scott DeBlaze	University of Chicago, Pritzker				
Mary Ann Guida	Columbia University				
Denise A. Johnson	Saint Louis University				
Sucheta Kulkarni	University of Michigan				
Lynn K. Meaney	University of Pennsylvania, Perelman				
Gregory Robinson	University of Maryland				
Jerome Sak	University of California San Francisco				
Niki Smith	Vanderbilt University				
Jill Stanley	Case Western Reserve University				
Rebecca Waltman	University of Iowa				
Kim Reed and Heather Sacks	AAMC GIP Staff				

Hypothesis

Space dollar densities are calculated similarly at different schools

Hypothesis

2

Using the same data, Schools will calculate similar or identical \$/nsf values

Faculty 1: Lab-Based

People:

3 students, 1 postdoc, 1 lab tech

Funding:

2 NIH R01s (\$250K direct each + F&A)

American Heart Association Award (\$100K direct + 10% F&A)

Expenditures:

\$540K direct

\$490K MTDC

Space (nsf): (2,680 assigned, 190 other)

2,000 assigned lab

300 assigned lab service

280 assigned office

100 assigned animal housing

50 share of common lab space

140 share of department admin

Faculty 1: Lab-Based (range = \$99 to \$325/nsf)

People:

3 students, 1 postdoc, 1 lab tech

Funding:

2 NIH R01s (\$250K direct each + F&A)

American Heart Association Award (\$100K direct + 10% F&A)

Expenditures:

\$540K direct \$490K MTDC

Space (nsf):

2,000 assigned lab
300 assigned lab service
280 assigned office
50 share of common lab space
140 share of department admin
100 assigned animal housing

What Is Contributing to the Variability?

- Types of dollars counted in the measurement
 - Total, direct dollars or indirect dollars
 - Different F&A rates
 - Expenditures vs awards
- Types of spaces counted in the measurement
 - Assigned vs shared
 - Animal housing
 - Lab service areas

Variables in Numerator (\$/nsf)

(n=8 SOMs)

Hypothesis

Space dollar densities are calculated similarly at different schools

Hypothesis 2

Using the same data, Schools will calculate similar or identical \$/nsf values

Hypothesis

3

Space dollar densities calculated using MTDC Expenditures lead to similar or identical \$/nsf values

MTDC Expenditures

- Includes direct salaries, wages, fringe benefits, materials and supplies, services, travel, up to the first \$25K of each subaward
- Excludes indirect costs, equipment, capital expenditures, patient care charges, rent, tuition remission, scholarships and fellowships, subaward costs >\$25K

Recalculating Using MTDC Expenditures in Numerator of \$/nsf Metric

- The mean \$/nsf differs by ~\$31/nsf
- Standard deviation decreases from \$73.01 to \$17.20

Faculty 2: Epidemiologist

People:

4 data analysts, 1 data coordinator, 1 sample processing technician

Funding:

1 R01 (\$250K direct + F&A)

10% salary on someone else's award (\$35K direct + F&A)

Expenditures:

\$225K direct +F&A

\$225K MTDC + F&A

\$35K salary coverage + F&A

Space (nsf):

400 assigned lab

140 assigned PI office

120 assigned support office

300 assigned cubicles

140 share of department admin

Faculty 2: Epidemiologist (range = \$198 to \$650/nsf)

People:

4 data analysts, 1 data coordinator, 1 sample processing technician

Funding:

1 R01s (\$250K direct + F&A) 10% salary on someone else's award (\$35K direct + F&A)

Expenditures:

\$225K direct +F&A \$225K MTDC + F&A \$35K salary coverage + F&A

Space (nsf):

400 assigned lab
140 assigned PI office
120 assigned support office
300 assigned cubicles
140 share of department admin

Recalculating Using MTDC Expenditures in Numerator of \$/NSF Metric

- The mean \$/nsf values are similar
- Standard deviation increases from \$139 to \$141/nsf
- Variability isn't due only to numerator (dollars).
- What are the contributing space variables?

For "Dry Lab" Research, Space Types Included in \$/nsf Denominator Are Variable

- PI office + support personnel offices + cubicles
- PI office + support office (no cubicles)
- PI office only (no support office or cubicles)
- None

Hypothesis

Space dollar densities are calculated similarly at different schools

Hypothesis 2

Using the same data, Schools will calculate similar \$/NSF values

Hypothesis

Calculations using MTDC expenditures will lead to similar/identical \$/nsf values

Hypothesis

4

Calculations using the same space components will lead to similar or identical \$/nsf values

Recalculating Using Either Constant Dollars or Constant Space

Fold Variation of Reported Values (\$/nsf) for Seven Hypothetical Faculty

Reasons for This Range of Variability

- Dollars (expenditures vs. awards)
- F&A rates differ between schools
- Included spaces offices are problematic
- Misalignment of space and dollars
 - Some exclude clinical spaces but include dollars related to clinical research
 - Some exclude animal space but include the dollars for animal costs

Greater Fold Variation of Reported Values (\$/NSF) for Other Faculty Phenotypes

What Is a 10-fold Difference?

50 pound dog *vs.*5 pound puppy

1 ostrich egg *vs.*2 chicken eggs

2-storey garage *vs.* 20-storey building

More Variables

- Sponsored instructional grants
 - T32s are not counted by all schools
- Centers
 - Dollars don't line up with space for Centers
 - Some schools don't include Center dollars or space as part of their current practice

Other Things We Learned

- Collaboration is important
 - but salary support on a collaborator's project is not valued in space metrics
- Some set \$/nsf expectations for early-stage investigators
- None included department admin space
- Some use more than one metric
- Space quality is known but not part of metric

Major Conclusion

- Comparisons of "\$/sf" across schools are meaningless (dangerous?) without a complete understanding of the methodologies used
- In other words, caveat utilitor! (let the user beware)

Recommendations for Internal Research Space Metric Discussions

- Dollars and spaces should align
 - Animal research and animal housing
 - Clinical trials and clinics
 - VA awards and VA space
- If you use a dollar/nsf metric, use MTDC expenditures
 - Expenditures are better than awards reflects activity
 - Reduces variances due to F&A rates by different sponsors
 - Eliminates non-research expenditures, off-site, & one-time costs
- Numbers should be a starting point for discussion

Other Information to Consider

- Career trajectory of faculty crystal ball
 - is s/he on the rise or not?
 - is there room to grow if even more successful?
 - would a space change help (others)?
- Others in the group
 - trainees, staff, visitors, collaborators
- Location, location
 - Are faculty near the equipment, people, services that they need for greatest success?
- Quality and physical layout
 - Does the assigned space support the program?

Layout Can Make a Difference in Metrics

freezer supplies

~15% difference in \$/nsf metric No real difference in function

Other Considerations

- Are facilities, floors, and rooms being used well?
- Do areas support and accelerate discovery and high-impact work?
- Do areas pose risks to people or research?
- If collaboration is important, how should it be valued?

How Should Shared Facilities Track?

- Do core facility spaces track to a department and/or faculty member?
- If at the department does managing a core unfairly impact \$/nsf space density values?
- Should these track to the Dean's office?

What About Team Science?

- Do financial expenditures, credit for awards, and/or space track to the leader or to team members?
 - Is faculty salary covered, or effort, on projects others lead valued?
 - Are metrics consistent with promotion or tenure policies?
 - Do metrics support faculty satisfaction goals?

Moving From Data to Action

Can we use our business systems to:

- 1. Know when space is not being used
- 2. Eliminate the stockpiles (old equipment)
- 3. Identify failing building components early
- 4. Eliminate on the job injuries from unsafe conditions

Final Thoughts

- Institutional assets should be used well.
- Metrics should inform decisions, but should not be a substitute for decisions.
 - Hicks, D. et al. The Leiden Manifesto for Research Metrics.
 2015, Nature 520:429-431.
 - Rigid use may lead to undesired, unintended messages.
- Other types of information should be used with metrics.
- Consistency reinforces transparency and a perception of fairness.

6/24/2022 44

Acknowledgements

Mary Ockenden

Associate Vice President & Director Medical Center Space Planning University of Rochester

Angela Souza

Senior Director, Planning and Facilities
The University of Arizona
College of Medicine, Tuscon

How Can the GIP Work With You?

Join Us!

Coming in Fall, 2017 – Space Symposium