AGENDA

TASK FORCE ON THE COST OF GRADUATE MEDICAL EDUCATION AND FACULTY PRACTICE PLANS

10 a.m. - 3 p.m.
January 16, 1973
AAMC Conference Room
One Dupont Circle
Washington, D.C. 20036

I. Approval of Minutes, Meeting of September 19, 1972 TAB A

II. Discussion of Draft Progress Report TAB B

III. Review: Survey of Medical Faculty Practice Plans TAB C

IV. Possible Legislative Action Concerning Financing of Graduate Medical Education TAB D
 A) Future Activity of the Coordinating Council On Medical Education

V. Discussion of Further Action by the Task Force
TO: TASK FORCE ON COST OF GRADUATE MEDICAL EDUCATION & FACULTY PRACTICE PLANS
FROM: Robert H. Kalinowski, M.D. and Richard M. Knapp, Ph.D.
SUBJECT: Minutes of September 19, 1972 meeting

Present:
Dr. William Anlyan
Dr. Christopher Fordham
Dr. Arnold Relman
Mr. Charles Womer

Guest:
Mr. Ronald Lochbaum

AAMC Staff:
Dr. John Cooper
Dr. Michael Ball
Miss Grace Beirne
Mr. Thomas Campbell
Mr. Charles Fentress
Dr. Robert Kalinowski
Dr. Richard Knapp
Mr. Joseph Rosenthal
Dr. Marjorie Wilson
Mr. Joe Murtaugh

Following approval of the Minutes of the July 19th meeting, Dr. Anlyan requested that Dr. Cooper report on the September 13th meeting of the parent committee. Dr. Cooper stated the purpose of that meeting was to:

1) Obtain the Committee's views of the direction and content of its report to the Assembly, focusing upon a first draft statement of this report, prepared by Mr. Murtaugh (this draft was sent to Committee members on September 8, 1972), and

2) Review the progress of the Task Force on Cost of Medical Education in its detailed study of the cost of undergraduate medical instruction at eight medical schools.

Committee Report

The Committee had made the decision (at earlier meetings) to focus its attention on the problems arising from Federal policy to provide financial support to medical schools on the basis of the enrollment of undergraduate medical students and increases in that enrollment, and the coupled Congressional directive to the Secretary, DHEW to launch a study to establish the methodology for ascertaining the "annual per student educational cost" of the program leading to the M.D. degree, to determine such costs for the 1971-72, 1972-73, and 1973-74 (estimated) school years; to describe national uniform standards for each medical school to use in determining these costs, and to recommend how these cost determinations could be used in fixing the payments to the school through capitation grants.

Because of the urgent need for the Association to make known its views on these critical matters, the Committee decided, as shown in the minutes of the July 12th meeting, to provide a report to the Assembly at the November annual meeting which would:

"establish the view of the Association concerning (1) the complexity of the medical education process -- the interrelatedness of the elements that are integral to that process (instruction, research, services); (2) the indivisibility of that process, beginning with the curriculum leading to the M.D. degree through the years of internship and residency; (3) that only upon the completion of this continuum can the national objective to increase the number of persons capable of performing the functions of physicians in the delivery of health care be satisfied.

The report will therefore stress the essentially arbitrary nature of efforts to establish estimates of the costs of undergraduate medical education, since this is a discrete concept only in the sense that a degree is awarded upon its completion and not in terms of the preparation of an individual for the independent practice of medicine.

However, because of pressures for such estimates, the Association will present a set of preliminary figures, for consideration as a guide to the probable costs of this segment of the continuum - to be followed by more definitive views of the entire medical education process, its costs, and financing, in the context of the broad range of activities of the contemporary medical center complex."

Following the prescriptions outlined in the July 12th directive, Mr. Murtaugh prepared the draft statement, reviewed by the Committee at this meeting. This first draft, however, did not include preliminary findings of the Committee's Task Force groups on the costs of undergraduate medical education process. It is now evident that because of the inherent difficulties in establishing cost estimates for the research and patient care components, and because the group studying the patient care aspect has only recently been organized, cost estimates will not be available in time for the report to the Assembly in November.

In view of this, and as a result of the day's discussion, the Committee decided to:

(1) Provide the Assembly in November with an interim progress report of the Committee's work, leading to
(2) A full report - a more definitive statement of the Association's views - following the July 12th directive, and including preliminary estimates of the costs of undergraduate medical education - to be released, after Executive Council/Assembly review, early in the spring of 1973. The timing of the release of this report is crucial, in view of the convening of the new Congress, which will be concerned with the extension of the Comprehensive Health Manpower Training Act of 1971, and the scheduled release of the interim report by the Institute of Medicine.

From the standpoint of a time frame for Task Force activity, Dr. Anlyan suggested that the group move forward with overall Committee on the undergraduate effort and then "review the bidding".

At this point, the Task Force discussed the components of the hospital budget which could be specifically ascribed to undergraduate medical education. These are as follows:

- house staff costs which can be allocated to the function of instructing undergraduate medical students (this would also include teaching physicians who are paid on the hospital budget);
- the cost of nursing, technician or other staff time as well as the allocation of other hospital cost centers (such as medical records, nursing service or social service) devoted to undergraduate medical education;
- the cost for hospital space allocated to undergraduate students.

Each of these three components of the hospital budget are included in the medical center cost studies. Mr. Campbell reported that the special eight center study was under way, but specific data on these allocations are not yet available.* Mr. Campbell further elaborated on the methodology used to allocate educational program costs to these three components.

Preliminary data available on the eight center study do indicate that while there are dollars in the hospital budget devoted to undergraduate education; the amount is relatively small when calculated as a percentage of the hospital budget. Following a lengthy discussion, the Task Force agreed on the following general statement.

Given the general attributes of a teaching hospital in terms of the presence of graduate medical educational programs, the character of its patient population, the scope of service provided, and the staffing levels implicit in the discharge of such

*the eight centers involved are as follows:
 b) Georgetown U. Sch. of Med. - St. Louis U. Sch. of Med.
 d) U. of Iowa Sch. of Med. - Ohio State U. Sch. of Med.
activities, the conduct of an undergraduate medical educational program in such a setting has only a minor effect (probably not exceeding 1%) on the overall patient care costs of such institutions. The Task Force will review cost study data when it becomes available to determine if there is a need to reconsider its position.

A further matter of concern is the problem of estimating the effect of teaching undergraduate medical students on such items as length of stay of patients, utilization of laboratory and x-ray services, as well as other measures of patient care and hospital service. After full discussion of the matter, the Task Force did not come to full agreement. The following statement characterizes the feeling of the group:

The current evidence available concerning the additional effect of the presence of medical students on laboratory, x-ray and other service utilization cannot be considered either sufficient or conclusive. Further, if any part of the costs of such increased services are considered educational in nature, they would in large part be attributed to graduate rather than undergraduate medical education.

At this point in the meeting Dr. Anlyan led a general discussion of the costs of graduate medical education and the need for more data and information concerning medical faculty practice plans. The staff was directed to examine the patient care components in the eight center study with specific reference to the cost of graduate medical education and to set forth a plan to:

1) examine institutional policies concerning faculty practice plans;
2) collect these plans from each of the schools;
3) determine the cash flow generated by these practice plans.

The next meeting of the Task Force is to be held on a date yet to be determined in early December.
Progress Report

The short-run goal of the Task Force was specifically stated as follows: "to determine the patient care cost component of undergraduate medical education". In order to accomplish this task, a discussion paper was drafted which set forth three reductions of the patient care cost component\(^1\) which could be included as educational costs of undergraduate medical education. These three reductions will serve as the framework on which this progress report is based.

I. Teaching Function Costs

The first reduction is relatively straightforward, and is already included in the AAMC cost allocation methodology. Included here are those activities financed under the teaching hospital budget of an academic medical center which can be appropriately defined as teaching in nature. These costs would include at least the following:

-- house staff time and effort devoted to the function of instructing medical students (this would also include teaching physicians who are paid on the hospital budget);

-- the cost of nursing, technician, or other staff time as well as the allocation of other cost centers (such as medical records or social service) devoted to undergraduate medical education;

-- an appropriate allocation of indirect costs to the function of undergraduate medical education.

\(^1\) For purposes of this report, The "patient care cost component" refers specifically to the teaching hospital budget.
The Task Force agreed on the following general statement at its meeting on September 19, 1972: Given the general attributes of a teaching hospital in terms of the presence of graduate medical educational programs, the character of its patient population, the scope of service provided, and the staffing levels implicit in the discharge of such activities, the conduct of an undergraduate medical educational program in such a setting has only a minor effect (probably not exceeding 1%) on the overall patient care costs of such institutions. The Task Force will review cost study data when it becomes available to determine if there is a need to reconsider its position.

The data derived from the eight center study related to this question is attached as Appendix A of this report.

II. Incremental Hospital Costs Due To Teaching

The second reduction is conceptually a relatively clear matter, but there is at present no agreed upon methodology much less an appropriate body of data to carry out the quantification process. Included here are those increased hospital operating costs resulting from the conduct of teaching functions within the clinical setting. This would include, for example, increased laboratory or radiological studies and a greater patient length of stay which allegedly result from the conduct of medical teaching programs.

There have been numerous evaluations of the varying differences in operating costs between teaching and non-teaching hospitals. The major part of those differences has been considered to be the combined effects of the added costs of teaching functions, the greater expense involved in treating a more seriously ill patient population and the more extensive services provided. Almost nothing has been done in separately measuring these several factors of difference much less making any attempt to distribute these incremental costs due to teaching programs among the several educational programs involved.

Studies and other documented material reviewed by the Task Force include the following:
1) A Comparison of Five Groups of Short-Term General Teaching Hospitals in North and South Carolina;

2) A Comparison of Hartford and Yale-New Haven Hospitals;

3) "Unidentified Educational Costs In A University Teaching Hospital: An Initial Study". (Vol. 47, April, 1972)
Journal of Medical Education;

4) "How Much Longer Do Patients Stay In Major Teaching Hospitals?" (Vol. 7, No. 2, February, 1971) PAS Reporter;

5) "Cholecystectomies In University and Nonuniversity Hospitals" (Vol. 9, No. 11, October 1971) PAS Reporter.

New Material Ready for Task Force review is as follows:

1) "Study of Hysterectomies" (Vol. 10, No. 2, September, 1972) PAS Reporter. (attached as Appendix B to this report);

2) A replication of the Kansas study (#1 in above list) completed by the Commission on Professional and Hospital Activities. (attached as Appendix C to this report);

3) A proposed study to compare hospitals which have large graduate medical education programs but very little in the way of undergraduate medical education programs and those which participate significantly in both graduate and undergraduate medical education. (attached as Appendix D to this report).

At its meeting on September 19, 1972, the Task Force adopted the following statement regarding this issue:

The current evidence available concerning the additional effect of the presence of medical students on laboratory, x-ray and other service utilization cannot be considered either sufficient or conclusive. Further, if any part of the costs of such increased services are considered educational in nature, they would in large part be attributed to graduate rather than undergraduate medical education.
III. The Sharing of Joint Costs

The third reduction of the patient care costs in reaching for the full costs of educational programs is principally a conceptual and policy problem, rather than a methodological one. Described thus far in the preceding steps one and two are those costs encompassed in the patient care expenditures of a teaching hospital which result directly, and to a degree indirectly, from the conduct of teaching activities. Carrying out the reductions of these costs, as proposed in steps one and two, would leave as a remainder, those expenditures for what might be termed regular patient care activity shorn of costs involved in or resulting from teaching activity.

The question that remains is whether any part of this remaining body of patient care costs should be allocated to the cost of medical education. The reason this question arises is the simple fact that the conduct of an undergraduate medical education program requires access to a particular volume of patient care activity. Without it there can be no medical education program. At the same time that patient care activity is being carried out to provide needed hospital care for sick people, this activity also serves another objective; namely, providing the patient care environment for medical education.

Thus, some part or all of the patient care activity of an academic medical center serves more than one objective and therefore may be considered constituting a joint endeavor serving dual purposes. Since this patient care activity is essential to each such purpose, it appears possible to argue that these costs should be distributed to both education and patient care objectives to the extent that they are truly joint. (In many instances, the patient care program of an academic medical center may be of a substantially greater magnitude than that required to provide an adequate teaching program. Such additional patient care activity would be above and beyond that which could be
considered as jointly serving educational programs, and its cost would have to be assigned to other program objectives).

At its meeting of July 19, 1972, the Task Force submitted this critical issue to intensive examination in order to search out a valid resolution of this apparent dichotomy. As a result, the group concluded that the requisite conditions for treating patient care activity in an academic health center as a joint process did not, in fact, exist. This conclusion was reached in the following manner:

The provision of medical and hospital care to a sick person must be considered as a substantive, essential and primary process, the necessary conditions for which cannot be subordinated or modified because of the concomitant existence of other objectives or intentions. Given a state of illness or disability requiring medical or hospital care, the first and principal action is the provision of that care, the place and setting of which is essentially an accidental or fortuitous aspect. Thus, the medical and hospital care that takes place in an academic health center is an activity that in one form or another would take place regardless of the presence or absence of the particular facility involved.

Thus, the costs of patient care in an academic health center must be primarily attributed to health care objectives and as such constitute a responsibility of whomever bears the burden of an individual patient's health services. Any teaching and educational activity associated therewith is derivative of and incremental to this basic patient care function.

This basic division of cost may in certain circumstances be subject to modifications in those circumstances where it may be necessary to bear certain patient care costs as education expense in order to assure that such patient care takes place in a particular setting, rather than any other setting. The acceptance of capital investment burdens involved in providing patient care facilities by a university is an example of this exception. In like manner,
the acceptance of patient care costs for indigent patients or patient costs in excess of reimbursement may in some part be a consequence of this particular situational requirement.

In concluding upon this view, the Task Force emphasized that not all differences between patient care costs in the teaching versus non-teaching setting can be ascribed to teaching differentials. As noted above, significant differences in cost result from the greater illness severity that characterizes the patient population of a teaching institution, the range and extent of technical services provided and frequently substantial qualitative differences in the provision of identical services.
HOSPITAL COST CONTRIBUTIONS TO MEDICAL STUDENT INSTRUCTIONAL COSTS AT SELECTED CENTERS
(Adjusted to 1972 Dollars)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>Total $ Expended</td>
<td>$ Alloc'd to M.D.</td>
<td>$ Per M.D.</td>
<td>$ All'd to M.D.</td>
</tr>
<tr>
<td>House Staff</td>
<td>Salaries/Perquisites</td>
<td>617,000</td>
<td>93,000</td>
</tr>
<tr>
<td>Nursing Service</td>
<td>5,562,000</td>
<td>70,000</td>
<td>53</td>
</tr>
<tr>
<td>Outpatient Service</td>
<td>344,000</td>
<td>21,000</td>
<td>43</td>
</tr>
<tr>
<td>Radiology</td>
<td>529,000</td>
<td>7,000</td>
<td>14</td>
</tr>
<tr>
<td>Anesthesiology</td>
<td>2,502,000</td>
<td>22,000</td>
<td>57</td>
</tr>
<tr>
<td>Laboratories</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Medical Records</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Social Service</td>
<td>177,000</td>
<td>19,000</td>
<td>41</td>
</tr>
<tr>
<td>Other (Misc.)</td>
<td>25,000</td>
<td>4,000</td>
<td>9</td>
</tr>
<tr>
<td>Administrative Services, etc.</td>
<td>3,131,000</td>
<td>5,000</td>
<td>10</td>
</tr>
<tr>
<td>Operating Room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Service & Depreciation</td>
<td>9,084,000</td>
<td>200,000</td>
<td>200</td>
</tr>
<tr>
<td>Other Hosp. Exp. not Associated with M.D. Instruction</td>
<td>4,843,000</td>
<td>4,709,000</td>
<td></td>
</tr>
</tbody>
</table>

Total: 9,726,000 | 97,000 | 200 | 1.0% | 15,693,000 | 228,000 | 481 | 1.5% | 28,739,000 | 945,000 | 2,414 | 3.3% | 1,857,000 | 3,112 |

Notes:
- This data was compiled by the Division of Operational Studies of the AAMC from program cost allocation studies conducted by the respective health centers for the indicated years. These studies were performed under the guidance of the AAMC.
- # Imputed cost
- + Negligible amount
- & Not available
- o Transferred from medical school to hospital
Hospital Cost Contributions to Medical Student Instructional Costs at Selected Centers (Adjusted to 1972 Dollars)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>%</td>
<td>$</td>
</tr>
<tr>
<td>Total $ Expended</td>
<td></td>
<td></td>
<td>Total $ Expended</td>
</tr>
<tr>
<td>House Staff</td>
<td>2,354,000</td>
<td>174,000</td>
<td>Total $ Expended</td>
</tr>
<tr>
<td>Salaries/Perquisites</td>
<td>300,000</td>
<td>825</td>
<td>Total $ Expended</td>
</tr>
<tr>
<td>General Supplies, etc.</td>
<td>3,219,000</td>
<td>41,000</td>
<td>Total $ Expended</td>
</tr>
<tr>
<td>Other (Misc.)</td>
<td>781,000</td>
<td>26,000</td>
<td>Total $ Expended</td>
</tr>
<tr>
<td>Indirect Costs</td>
<td>3,219,000</td>
<td>41,000</td>
<td>Total $ Expended</td>
</tr>
<tr>
<td>Other Hospital Expenses not associated with M.D. instruct.</td>
<td>7,132,000</td>
<td></td>
<td>Total $ Expended</td>
</tr>
<tr>
<td>Total</td>
<td>26,685,000</td>
<td>515,000</td>
<td>Total $ Expended</td>
</tr>
</tbody>
</table>

Notes:

- This data was compiled by the Division of Operational Studies of the AAMC from program cost allocation studies conducted by the respective health centers for the indicated years. These studies were performed under the guidance of the AAMC.
- Imputed cost:
- Negligible amount:
- Not available:
- Transferred from medical school to hospital:
Hospital Cost Contributions to Medical Student Instructional Costs at Selected Centers

(Adjusted to 1972 Dollars)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>House Staff</td>
<td>House Staff</td>
<td>House Staff</td>
<td>House Staff</td>
</tr>
<tr>
<td>Salaries/Perquisites</td>
<td>$617,000</td>
<td>$1,107,000</td>
<td>$1,689,000</td>
</tr>
<tr>
<td>% Allocated to M.D.</td>
<td>191</td>
<td>15.0%</td>
<td>318</td>
</tr>
<tr>
<td>Operating Room</td>
<td>Operating Room</td>
<td>Operating Room</td>
<td>Operating Room</td>
</tr>
<tr>
<td>General Service & Depreciation</td>
<td>General Service & Depreciation</td>
<td>General Service & Depreciation</td>
<td>General Service & Depreciation</td>
</tr>
</tbody>
</table>

Notes:
- # Imputed cost
- + Negligible amount
- & Not available
- Transferred from medical school to hospital

This data was compiled by the Division of Operational Studies of the AAMC from program cost-allocation studies conducted by the respective health centers for the indicated years. These studies were performed under the guidance of the AAMC.
Hospital Cost Contributions to Medical Student Instructional Costs at Selected Centers

(Adjusted to 1972 Dollars)

Hospital A (1968-69)

<table>
<thead>
<tr>
<th>Category</th>
<th>Total Expended</th>
<th>Allocated to M.D. Instr.</th>
<th>Allocated to M.D. Stu't</th>
<th>$ Per M.D. Stu't</th>
<th>% All td to M.D. Stu't</th>
</tr>
</thead>
<tbody>
<tr>
<td>House Staff: Salaries/Perquisites</td>
<td>3,354,000</td>
<td>174,000</td>
<td>515</td>
<td>5.2%</td>
<td>5.2%</td>
</tr>
<tr>
<td>Nursing Service</td>
<td>6,557,000</td>
<td>66,000</td>
<td>194</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Outpatient Service</td>
<td>1,364,000</td>
<td>69,000</td>
<td>203</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Radiology</td>
<td>1,923,000</td>
<td>82,000</td>
<td>243</td>
<td>4.3%</td>
<td>4.3%</td>
</tr>
<tr>
<td>Anesthesiology</td>
<td>839,000</td>
<td>25,000</td>
<td>74</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Laboratories</td>
<td>1,247,000</td>
<td>27,000</td>
<td>81</td>
<td>2.2%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Medical Records</td>
<td>269,000</td>
<td>5,000</td>
<td>16</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Social Service</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Other (Misc.)</td>
<td>781,000</td>
<td>26,000</td>
<td>78</td>
<td>3.4%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Indirect Costs</td>
<td>3,219,000</td>
<td>41,000</td>
<td>123</td>
<td>1.3%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Total</td>
<td>26,685,000</td>
<td>515,000</td>
<td>1,327</td>
<td>1.9%</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

Hospital B (1969-70)

<table>
<thead>
<tr>
<th>Category</th>
<th>Total Expended</th>
<th>Allocated to M.D. Instr.</th>
<th>Allocated to M.D. Stu't</th>
<th>$ Per M.D. Stu't</th>
<th>% All td to M.D. Stu't</th>
</tr>
</thead>
<tbody>
<tr>
<td>House Staff: Salaries/Perquisites</td>
<td>300,000</td>
<td>825</td>
<td>4,797,000</td>
<td>117,777</td>
<td>7.5%</td>
</tr>
<tr>
<td>Nursing Service</td>
<td>46,000</td>
<td>94</td>
<td>46,000</td>
<td>1.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Outpatient Service</td>
<td>1,177,000</td>
<td>431</td>
<td>1,177,000</td>
<td>210,000</td>
<td>17.8%</td>
</tr>
<tr>
<td>Radiology</td>
<td>381,000</td>
<td>27</td>
<td>1,533,000</td>
<td>13,000</td>
<td>0.8%</td>
</tr>
<tr>
<td>Anesthesiology</td>
<td>11,000</td>
<td>22</td>
<td>381,000</td>
<td>27,000</td>
<td>2.9%</td>
</tr>
<tr>
<td>Medical Records</td>
<td>17,000</td>
<td>35</td>
<td>208,000</td>
<td>17,000</td>
<td>3.2%</td>
</tr>
<tr>
<td>Social Service</td>
<td>500</td>
<td></td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (Misc.)</td>
<td>182,000</td>
<td></td>
<td>182,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect Costs</td>
<td>1,963,000</td>
<td>53,000</td>
<td>1,963,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,089,000</td>
<td>716</td>
<td>1,089,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hospital C (1968-69)

<table>
<thead>
<tr>
<th>Category</th>
<th>Total Expended</th>
<th>Allocated to M.D. Instr.</th>
<th>Allocated to M.D. Stu't</th>
<th>$ Per M.D. Stu't</th>
<th>% All td to M.D. Stu't</th>
</tr>
</thead>
<tbody>
<tr>
<td>House Staff: Salaries/Perquisites</td>
<td>764,000</td>
<td>38,190</td>
<td>764,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursing Service</td>
<td>38,190</td>
<td>93</td>
<td>38,190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outpatient Service</td>
<td>1,177,000</td>
<td>431</td>
<td>1,177,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiology</td>
<td>210,000</td>
<td>431</td>
<td>210,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anesthesiology</td>
<td>350,000</td>
<td>107</td>
<td>350,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Records</td>
<td>17,600,000</td>
<td>95</td>
<td>17,600,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Service</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17,600,000</td>
<td>95</td>
<td>17,600,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hospital D (1969-70)

<table>
<thead>
<tr>
<th>Category</th>
<th>Total Expended</th>
<th>Allocated to M.D. Instr.</th>
<th>Allocated to M.D. Stu't</th>
<th>$ Per M.D. Stu't</th>
<th>% All td to M.D. Stu't</th>
</tr>
</thead>
<tbody>
<tr>
<td>House Staff: Salaries/Perquisites</td>
<td>1,177,000</td>
<td>431</td>
<td>1,177,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursing Service</td>
<td>431</td>
<td>95</td>
<td>431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outpatient Service</td>
<td>210,000</td>
<td>107</td>
<td>210,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiology</td>
<td>17,600,000</td>
<td>95</td>
<td>17,600,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anesthesiology</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Records</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Service</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17,600,000</td>
<td>95</td>
<td>17,600,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

This data was compiled by the Division of Operational Studies of the AAMC from program cost allocation studies conducted by the respective health centers for the indicated years. These studies were performed under the guidance of the AAMC.

* # Imputed cost
* + Negligible amount
* & Not available
* o Transferred from medical school to hospital

Document from the collections of the AAMC. Not to be reproduced without permission.
STUDY OF Hysterectomies

Margaret A. Child, MD, MPH
William J. Ledger, MD

This PAS Reporter issue is an adaptation of an exhibit first shown at the Twentieth Annual Meeting of the American College of Obstetricians and Gynecologists held in May 1972, in Chicago.

Hysterectomy is a common operation. It is estimated that 678,000 are performed each year in the United States. Of the major operations only appendectomy is more frequent.¹

We studied 12,026 hysterectomies recorded as the most important operation. This sample was obtained by systematically selecting every seventh patient of the 5,208,710 discharges from PAS hospitals from January through June 1970.

We compared

- Abdominal and vaginal approaches
- White and nonwhite patients
- Hysterectomies, cholecystectomies, and appendectomies
- Hospitals with obstetrics and gynecology residencies, other teaching hospitals, and nonteaching hospitals
- Patients of different ages

Dr. Child is a biostatistician at CPHA and lecturer in Biostatistics, School of Public Health of the University of Michigan.

Dr. Ledger is associate professor of Obstetrics and Gynecology, University of Michigan Medical School and chief of the Gynecology Outpatient Department at the University Hospital, Ann Arbor.
The distribution of patients in these categories is shown in the following table.

Table 1

DISTRIBUTION OF PATIENTS

<table>
<thead>
<tr>
<th>Operative Approach</th>
<th>Number</th>
<th>Percent</th>
<th>Race</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal</td>
<td>8,462</td>
<td>70</td>
<td>White</td>
<td>9,882</td>
<td>82</td>
</tr>
<tr>
<td>Vaginal</td>
<td>3,564</td>
<td>30</td>
<td>Nonwhite</td>
<td>1,070</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not Coded^2</td>
<td>1,074</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>12,028</td>
<td>100</td>
<td></td>
<td>12,026</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching Status of Hospital</th>
<th>Number of Patients</th>
<th>Percent</th>
<th>Age Distribution</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>With OB-GYN Residency</td>
<td>3,096</td>
<td>26</td>
<td>Under 25 Years</td>
<td>194</td>
<td>2</td>
</tr>
<tr>
<td>Other Teaching Nonteaching</td>
<td>3,390</td>
<td>28</td>
<td>25–34</td>
<td>2,267</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>5,540</td>
<td>46</td>
<td>35–44</td>
<td>4,592</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>12,026</td>
<td>Over 44</td>
<td>4,973</td>
<td>41</td>
</tr>
</tbody>
</table>

Table 2

APPROACH: SIGNIFICANT DIFFERENCES (P<0.001)

<table>
<thead>
<tr>
<th></th>
<th>Abdominal</th>
<th>Vaginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent with postoperative fever^3</td>
<td>31%</td>
<td>38%</td>
</tr>
<tr>
<td>Percent given antibiotics</td>
<td>45%</td>
<td>54%</td>
</tr>
<tr>
<td>Percent given transfusions</td>
<td>17%</td>
<td>13%</td>
</tr>
</tbody>
</table>

Tables 2 through 6 display those differences we found to be statistically significant.

Table 2 shows that a higher percentage of patients having vaginal hysterectomy had a postoperative fever and more were given antibiotics. Patients with abdominal hysterectomies were more often given transfusions.

The most dramatic differences were between whites and nonwhites. Incidence of postoperative fever and use of antibiotics were much higher for nonwhites. There was also a consistently higher transfusion rate for nonwhites. It existed for all final diagnoses explaining admission, all ages, all types hospitals, and both types of hysterectomy. Furthermore, the average length of stay for nonwhites was almost a day and a half longer.
Table 3

RACE: SIGNIFICANT DIFFERENCES (P<0.001)

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Nonwhite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent with postoperative fever</td>
<td>32%</td>
<td>44%</td>
</tr>
<tr>
<td>Percent with antibiotics</td>
<td>46%</td>
<td>61%</td>
</tr>
<tr>
<td>Percent with transfusions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal hysterectomies</td>
<td>15%</td>
<td>29%</td>
</tr>
<tr>
<td>Vaginal hysterectomies</td>
<td>12%</td>
<td>19%</td>
</tr>
<tr>
<td>Length of stay</td>
<td>10.3 days</td>
<td>11.6 days</td>
</tr>
</tbody>
</table>

By comparison with two common abdominal operations, hysterectomies were found to have fewer postoperative deaths. Hysterectomy had less than half the mortality of appendectomy and less than one-eighth the mortality of cholecystectomy. Yet transfusions and antibiotics were used significantly more.

Table 4

OTHER OPERATIONS: SIGNIFICANT DIFFERENCES (P<0.001)

<table>
<thead>
<tr>
<th></th>
<th>Hysterectomy</th>
<th>Appendectomy</th>
<th>Cholecystectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality per 10,000 patients</td>
<td>16.4</td>
<td>37.9</td>
<td>141.7</td>
</tr>
<tr>
<td>Average length of stay</td>
<td>10.3 days</td>
<td>6.9 days</td>
<td>13.4 days</td>
</tr>
<tr>
<td>Percent given transfusions</td>
<td>15%</td>
<td>1%</td>
<td>5%</td>
</tr>
<tr>
<td>Percent given antibiotics</td>
<td>48%</td>
<td>45%</td>
<td>43%</td>
</tr>
</tbody>
</table>

Patients treated in hospitals with an OB-GYN residency were less likely to receive antibiotics though they more often had postoperative fever. They were less likely to be given antibiotics without culture. They had more genitourinary X rays, chest X rays, and electrocardiograms. Patients in nonteaching hospitals were more likely to have routine urine and blood studies. They had a shorter average stay.

Table 5

HOSPITAL TYPE: SIGNIFICANT DIFFERENCES (P<0.025)

<table>
<thead>
<tr>
<th></th>
<th>OB-GYN Residency</th>
<th>Other Teaching</th>
<th>Nonteaching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent with postoperative fever</td>
<td>36%</td>
<td>34%</td>
<td>31%</td>
</tr>
<tr>
<td>Percent given</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotics</td>
<td>45%</td>
<td>46%</td>
<td>50%</td>
</tr>
<tr>
<td>Antibiotics without culture</td>
<td>55%</td>
<td>63%</td>
<td>73%</td>
</tr>
<tr>
<td>Chest X rays</td>
<td>31%</td>
<td>25%</td>
<td>26%</td>
</tr>
<tr>
<td>Electrocardiograms</td>
<td>37%</td>
<td>31%</td>
<td>27%</td>
</tr>
<tr>
<td>Genitourinary X rays</td>
<td>15%</td>
<td>13%</td>
<td>11%</td>
</tr>
<tr>
<td>Urinalysis and hemoglobin or hematocrit not done (per 1,000)</td>
<td>12</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>Average length of stay</td>
<td>10.5 days</td>
<td>10.5 days</td>
<td>10.0 days</td>
</tr>
</tbody>
</table>
Age seemed to influence the percent with transfusions and the number of units per transfused patient. Patients 25 to 34 years were less often transfused than any other age group. Patients under 25 appeared to be most often transfused, but because of the small number the difference is not significant. These young patients were given significantly more blood per transfused patient, however. Antibiotic use decreased with age while average hospital stay increased.

Table 6

PATIENT AGE: SIGNIFICANT DIFFERENCES (P<0.025)

<table>
<thead>
<tr>
<th></th>
<th>Under 25</th>
<th>25-34</th>
<th>35-44</th>
<th>Over 44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent with transfusions</td>
<td>19%</td>
<td>13%</td>
<td>16%</td>
<td>16%</td>
</tr>
<tr>
<td>Average units per transfused patient</td>
<td>2.8+</td>
<td>2.3+</td>
<td>2.1+</td>
<td>2.2+</td>
</tr>
<tr>
<td>Percent given antibiotics</td>
<td>55%</td>
<td>50%</td>
<td>48%</td>
<td>47%</td>
</tr>
<tr>
<td>Average length of stay</td>
<td>9.1 days</td>
<td>9.6 days</td>
<td>9.9 days</td>
<td>11.0 days</td>
</tr>
</tbody>
</table>

NOTES

1. This projection for 1971 comes from the Hospital Record Study, a joint study by CPHA and Lea Incorporated, Ambler, Pennsylvania.

2. Some hospitals elect to record race only as white and nonwhite. Others choose to distinguish black and Asiatic from white. Still others use an option to mean some special group with or without racial significance. We have included black, Asiatic, and nonwhite in the nonwhite category. Patients whose race was not recorded are combined with those optionally coded into an unrecorded group.

3. These are patients whose admission temperature was 99.9F or less, but whose peak temperature during the hospitalization was 101.0F or more. In hospitals using the centigrade scale, these limits are 37.4C and 33.0C. (Although the Fahrenheit and Centigrade temperatures do not precisely correspond, they are represented by the same codes in the abstracted data.)

4. Data for the other operations were obtained from a sample of 9,671 cholecystectomies and 7,602 appendectomies by selecting every 7th patient from all patients discharged from PAS hospitals from January through June 1970. The only operations counted were those recorded as the most important. The H-ICDA codes used were:
 - 71.0 and 71.1 abdominal hysterectomy
 - 71.3 vaginal hysterectomy
 - 53.5 cholecystectomy
 - 49.1 appendectomy

5. The plus sign (+) following the average units of blood per transfused patient reflects the limitation to one digit on the case abstract for the number of units given. Nine or more units is coded as nine. Therefore the possibility remains that the average is higher.
AIRMAIL

Richard M. Knapp, PhD
Director
Division of Teaching Hospitals
Association of American Medical Colleges
Suite 200
One Dupont Circle, N.W.
Washington, D. C. 20036

Dear Dr. Knapp

Enclosed is a study we completed for you on the utilization of diagnostic services for selected diagnoses and operations. We hope you find it useful.

The PAS Reporter issues dealing with comparisons between teaching and non-teaching hospitals are still being composed and we will forward copies to you as soon as they are finished.

If you have any questions or comments about the enclosed study, don’t hesitate to call us.

Sincerely,

Marjorie S. Greenberg
Assistant Manager
Information Services

Enclosure: 1. Memorandum Report: "Utilization of Diagnostic Services for Selected Diagnoses and Operations"
2. PAS Case Abstract

4 December 1972
In a letter dated 5 June 1972, Richard M. Knapp, PhD, Director, Division of Teaching Hospitals, inquired about replicating a study comparing the utilization of diagnostic services in teaching hospitals and nonteaching hospitals. The original study appeared in the April 1972 issue of the *Journal of Medical Education*.

A similar study has been completed on 9,030 patients discharged during April 1971 through March 1972 from ten large PAS hospitals. The five teaching hospitals have residencies in medicine, surgery, and pediatrics* and the five nonteaching hospitals do not. All of the hospitals belong to the Medical Audit Program (MAP) and all of them utilized SMA-12 multichannel analyzers.

The following six groups of patients were studied: pneumonia and bronchitis (H-ICDA 480-491); diabetes mellitus (H-ICDA 250); acute myocardial infarction (H-ICDA 410); peptic ulcer (H-ICDA 531-534); appendectomy (H-ICDA 49.1); and cholecystectomy (H-ICDA 53.5). All diagnoses were final diagnoses explaining admission and all operations were the most important operations. Pneumonia and bronchitis patients were studied on the pediatric medicine service. Appendectomy patients and cholecystectomy patients were studied on the adult surgery service. All other groups were studied on the adult medicine service.

Enclosed is an illustration displaying data on the patients studied. The first eleven measures through the percent receiving consultations provide for an analysis of the patient mix in each of the two hospital groups. The selection of patients was not based on the requirement that patients have few or no secondary diagnoses and operations because this procedure would require large amounts of computer time to pass through a summary of PAS data and sort out patients with no secondary diagnoses or operations.

*According to the Directory of Approved Internships and Residencies for 1971-1972 published by the AMA.
The number of patients receiving multichannel chemistry analysis is included as a measure of diagnostic service utilization. It also serves as an indicator of the effect multichannel analysis may have on the number of tests performed, and therefore the variety index. If 100% of the patients had multichannel analysis, six items on the PAS Case Abstract (items 46:1-6, Blood Chemistry) would automatically be marked. If no patients had multichannel analysis the only items marked off on the abstract under Blood Chemistry would be those tests performed individually.

Minimum lab not met is included as a quality measure since it signifies that two basic tests (urinalysis and hemoglobin or hematocrit) were not performed in spite of other diagnostic examinations and x-rays. When analyzing the data on minimum lab not met it should be kept in mind that deaths may have a positive effect on this measure, particularly, if the deaths occurred soon after admission. The illustration also includes data on the percentage of patients receiving EKG's, repeat EKG's, and x-rays (chest, skeletal, digestive and genitourinary).

A PAS Case Abstract is attached documenting the items included in the variety index measure.

Attachment: Illustration
PAS Case Abstract

jkl-15:8-9
Utilization of Diagnostic Services for Selected Diagnoses and Operations: Comparison Between Five Large Teaching and Five Large Nonteaching PAS Hospitals
April 1971–March 1972

<table>
<thead>
<tr>
<th>Measures</th>
<th>Pneumonia and Bronchitis</th>
<th>Diabetes</th>
<th>Acute Myocardial Infarction</th>
<th>Peptic Ulcer</th>
<th>Cholecystectomy</th>
<th>Appendectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2) (3)</td>
<td>(4) (5)</td>
<td>(6) (7)</td>
<td>(8) (9)</td>
<td>(10) (11)</td>
</tr>
<tr>
<td>No. of patients</td>
<td>430 852</td>
<td>685 811</td>
<td>1,122 931</td>
<td>402 882</td>
<td>609 1,220</td>
<td>266 730</td>
</tr>
<tr>
<td>Rate per 1,000 discharges</td>
<td>5.1 9.6</td>
<td>8.2 9.1</td>
<td>13.4 10.5</td>
<td>5.9 9.9</td>
<td>7.3 13.7</td>
<td>3.2 8.2</td>
</tr>
<tr>
<td>Percent Male</td>
<td>61% 58%</td>
<td>62% 37%</td>
<td>67% 71%</td>
<td>60% 59%</td>
<td>26% 24%</td>
<td>56% 51%</td>
</tr>
<tr>
<td>Percent Deaths</td>
<td>7.2 4.8</td>
<td>11.2 8.4</td>
<td>21.9 10.3</td>
<td>9.7 8.6</td>
<td>13.3 11.3</td>
<td>7.9 6.4</td>
</tr>
<tr>
<td>Average Stay</td>
<td>0.7% 7.2%</td>
<td>3.8% 2.6%</td>
<td>18.9% 19.3%</td>
<td>0.4% 0.6%</td>
<td>2.1% 1.2%</td>
<td>1.5% 0.4%</td>
</tr>
<tr>
<td>Pts. 65 and over</td>
<td>28.6 29.7</td>
<td>48.8 42.0</td>
<td>22.4 21.8</td>
<td>24.0 18.5</td>
<td>7.5 3.2</td>
<td>27.4 20.8</td>
</tr>
<tr>
<td>VNS 10,000</td>
<td>61.9 55.2</td>
<td>26.3 28.2</td>
<td>40.7 45.3</td>
<td>29.9 30.2</td>
<td>22.5 22.2</td>
<td>72.6 71.2</td>
</tr>
<tr>
<td>Temp 100° F</td>
<td>60.2 55.8</td>
<td>6.4 7.3</td>
<td>4.7 3.7</td>
<td>4.5 3.7</td>
<td>9.2 3.7</td>
<td>27.4 20.8</td>
</tr>
<tr>
<td>No. of operated pts.</td>
<td>1.2 0.5</td>
<td>1.8 5.9</td>
<td>10.9 4.7</td>
<td>19.1 8.7</td>
<td>100.0 100.0</td>
<td>100.0 100.0</td>
</tr>
<tr>
<td>Blood Transfusions</td>
<td>14.2% 5.8%</td>
<td>41.5% 21.3%</td>
<td>43.0% 22.7%</td>
<td>35.6% 23.2%</td>
<td>40.4% 48.4%</td>
<td>16.9% 26.5%</td>
</tr>
<tr>
<td>Percent Consultations</td>
<td>14.6% 3.5%</td>
<td>68.9% 82.7%</td>
<td>70.4% 73.9%</td>
<td>73.4% 81.5%</td>
<td>61.2% 60.1%</td>
<td>31.2% 28.2%</td>
</tr>
<tr>
<td>Multichannel Chemistry</td>
<td>7.9% 2.7%</td>
<td>6.1% 2.7%</td>
<td>9.9% 9.5%</td>
<td>6.7% 3.1%</td>
<td>3.2% 1.1%</td>
<td>12.4% 5.6%</td>
</tr>
<tr>
<td>Min. lab. not met</td>
<td>12 8</td>
<td>18 15</td>
<td>18 15</td>
<td>17 13</td>
<td>12 12</td>
<td>12 12</td>
</tr>
<tr>
<td>Variety Index</td>
<td>7.0% 2.8%</td>
<td>77.7% 61.4%</td>
<td>95.3% 95.3%</td>
<td>66.9% 51.7%</td>
<td>67.7% 44.1%</td>
<td>16.5% 7.8%</td>
</tr>
<tr>
<td>EKG</td>
<td>2.8% 0.1%</td>
<td>16.9% 13.6%</td>
<td>90.5% 87.4%</td>
<td>15.9% 8.7%</td>
<td>17.6% 9.3%</td>
<td>4.1% 2.3%</td>
</tr>
<tr>
<td>Repeat EKG</td>
<td>2.8% 0.1%</td>
<td>16.9% 13.6%</td>
<td>90.5% 87.4%</td>
<td>15.9% 8.7%</td>
<td>17.6% 9.3%</td>
<td>4.1% 2.3%</td>
</tr>
<tr>
<td>X-rays:</td>
<td>Chest 85.6% 83.7%</td>
<td>66.6% 55.7%</td>
<td>87.7% 69.6%</td>
<td>65.7% 46.1%</td>
<td>66.7% 45.2%</td>
<td>35.7% 19.2%</td>
</tr>
<tr>
<td>Skeletal 23.0% 15.3%</td>
<td>6.1 5.6</td>
<td>9.3 8.3</td>
<td>9.2 3.7</td>
<td>1.8 0.5</td>
<td>10.8 10.1</td>
<td></td>
</tr>
<tr>
<td>Digestive</td>
<td>3.0 1.1</td>
<td>23.3 25.6</td>
<td>7.8 20.3</td>
<td>89.4 92.0</td>
<td>77.7 57.1</td>
<td>14.9 7.8%</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>1.4% 0.2%</td>
<td>14.5% 15.0%</td>
<td>2.3% 2.0%</td>
<td>12.0% 7.0%</td>
<td>9.4% 5.6%</td>
<td>31.2% 26.5%</td>
</tr>
</tbody>
</table>

1. Large hospitals discharge over 15,000 patients annually. Teaching hospitals have residencies in surgery, medicine, and pediatric medicine. Nonteaching hospitals do not have residencies in these three specialties.

2. H-ICDA 480-491 as final diagnosis explaining admission.

3. H-ICDA 250 as final diagnosis explaining admission.

4. H-ICDA 410 as final diagnosis explaining admission.

5. H-ICDA 531-534 as final diagnosis explaining admission.

6. H-ICDA 53.5 as most important operation.

7. H-ICDA 49.1 as most important operation.

8. Excluding deaths.

9. Minimum laboratory work (urinalysis and hemoglobin or hematocrit) was not done at any time during hospitalization.

10. The average number of different kinds of laboratory tests, diagnostic X-rays and other tests out of a possible total of seventy.

*A refers to teaching hospitals

**A refers to nonteaching hospitals.
Also included are the following H-ICDA diagnostic procedure codes:

94.5 Other contrast radiography
94.6 Radiosotope scanning examination
94.7 Other radioisotope examination
94.8 Ultrasonic radiography
94.9 Other radiography
97.0 Physical Medicine and rehabilitation
99.7 Spinal puncture
December 19, 1972

Marjorie S. Greenberg
Assistant Manager
Information Services
Commission on Professional and Hospital Activities
1968 Green Road
Ann Arbor, Michigan 48105

Dear Marjorie:

In follow up to my earlier letter of December 4th, I am still very interested in making some comparisons between hospitals which have large graduate medical education programs but very little in the way of undergraduate medical education programs and those which participate significantly in both undergraduate and graduate medical education. My hypothesis would be that the diagnostic testing use rates would not be significantly different. In other words, the presence of undergraduate medical students plays a minor role, if any, in determining diagnostic testing rates. I think the diagnosis used in the study which you recently sent would be appropriate.

I have reviewed the PAS roster and I think the following 20 institutions would be useful in making the comparisons:

List I
Graduate Training Only

1) Iowa Methodist, Des Moines	6) St. John's Mercy, St. Louis, Mo.
2) Pacific Medical Center, San Fran.	7) Aultman, Canton, Ohio
3) Catholic Medical Center, NYC	8) St. Elizabeth, Youngstown, Ohio

List II
Undergraduate and Graduate Training

1) Duke, Durham, NC	6) Baylor, Dallas, Texas
2) Loma Linda, Loma Linda, Ca.	7) Vermont Medical Ctr., Burlington
3) U. of Calif., San Francisco	8) Med. College of Va., Richmond
4) Loyola U., Chicago	9) Martland, Newark, N.J.
5) Ohio State U., Columbus	10) Albert Einstein, NYC
Again, I really appreciate your efforts on our behalf. I believe the study comparing teaching and non teaching hospitals will be useful to us. I shall look forward to hearing from you.

Sincerely,

RICHARD M. KNAPP, Ph.D.
Director
Division of Teaching Hospitals

RMK/plf
1) Does your institution have a medical faculty practice plan?

 YES
 YES, but intend to modify it
 YES, but intend to discontinue it
 NO
 NO, but intend to start one

2) Do all Clinical Departments have a Medical Faculty Practice Plan?

 YES, and all departments are under the same Plan
 YES, but not all departments have the same Plan
 NO, but departments which do, all have the same Plan
 NO, and not all departments have the same Plan

3) If reply to #2 above is NO, please list the Clinical Departments with No Plan.

 __
 __
 __
 __

 If your school has no faculty practice plan, please describe any restrictions or requirements pertinent to the practice of medicine by members of your clinical faculty in response to question #22 on the final page of this survey.

4) Does the Plan function as:

 One or More Partnerships
 A Separate Corporation
 A Separate Foundation
 Agency (of University of Medical School)
 Other (Please specify)

5) Is the full-time faculty member's participation in the plan?

 Voluntary
 Required
 Other (Please specify)

6) If participation is voluntary or selective, what percentage of full-time faculty participate?

 __

7) Are there restrictions on the facilities in which Plan members may practice?

 YES
 NO
8) Are Plan participants permitted to practice outside the auspices of the Plan?

YES NO

If YES, is the faculty member's clinical activity outside the Plan restricted insofar as the number of:

Patients he may bill
Hours spent in this activity
Dollars collected from this activity

Other (please specify)

9) Within the Plan, is there a minimum or maximum number of patients which must be seen by members of the Plan?

NO
Maximum
Minimum

10) Within the Plan, is there a minimum or maximum number of hours which must be set aside for seeing patients by members of the Plan?

NO
Maximum
Minimum

11) Is it policy that medical practice under the auspices of the Plan encompasses:

A. All private patients in the medical center
B. All service patients in the medical center
C. All patients in the medical center

12) Is faculty compensation earned through the Plan based upon:

A fixed guaranteed dollar amount decided at the beginning of the year
A fixed dollar amount plus percentage of departmental plan income
A fixed dollar amount plus percentage of individual plan income

Other (please specify)

13) Please list by position title, the composition of the policy making board or group which oversees the functioning of the Plan.
14) What component of the medical center organization is responsible for billing patients served by members of the Plan?

- Office which administers the Plan
- Academic Department
- Hospital
- Individual Faculty Member
- Business Office of the College
- Other (please specify) ____________________________

15) Has the Plan been reviewed and approved by IRS?

- YES
- NO

16) a. What was the gross income to the Plan in your most recent fiscal year? $ __________ FY ________

b. What portion of this gross income was necessary to administer the Plan? $ __________

c. What portion of the remaining income was expended for salaries and fringe benefits of participants in the Plan?

d. How much of the net remaining income (after b and c have been deducted) accrued to departmental budgets and the dean's budget as a result of the Plan's operation during the most recent fiscal year?

- Dean's budget $ __________
- Departmental budgets $ __________

e. Are there restrictions placed on the use of funds in (d) above?

- YES
- NO

 If YES, please explain, ___

17) Is the income of the Plan allocated by formula to departmental budgets and the dean's budget?

- YES
- NO
If YES, briefly describe the formula,

18) What control devices are used to ensure membership conformance to the policies and procedures of the Plan?
 - External Audit of Billing Records
 - Member Submission of Annual Income Tax Statement
 Other, please explain,

19) Have questions been raised by the parent university or state government concerning the proprietorship of funds generated by members of the Plan?
 NO
 University
 State
If YES, please explain,

20) List the two most significant problems in the current operation of the Plan.
 A)
 B)
21) If you could make one policy change in the current operation of the Plan, what would that change be?

__
__
__
__

22) Are there additional comments you wish to make concerning the operation or policies of the Plan at your institution?

__
__
__
__

PLEASE ENCLOSURE A COPY OF YOUR INSTITUTION'S PLAN WITH THIS QUESTIONNAIRE.

MEDICAL SCHOOL

Individual to whom questions should be directed
"GRANTS FOR TRAINING, TRAINEESHIPS, AND FELLOWSHIPS IN FAMILY MEDICINE

"Sec. 767. There are authorized to be appropriated $25,000,000 for the fiscal year ending June 30, 1972, $35,000,000 for the fiscal year ending June 30, 1973, and $40,000,000 for the fiscal year ending June 30, 1974, for grants by the Secretary to any public or nonprofit private hospital—

"(1) to plan, develop, and operate, or participate in, an approved professional training program (including continuing education and approved residency programs in family practice) in the field of family medicine for medical students, interns, residents, or practicing physicians;

"(2) to provide financial assistance (in the form of traineeships and fellowships) to medical students, interns, residents, practicing physicians, or other medical personnel, who are in need thereof, who are participants in any such program, and who plan to specialize or work in the practice of family medicine; and

"(3) to plan, develop, and operate, or participate in, other approved training programs in the field of family medicine."
"GRANTS FOR SUPPORT OF POSTGRADUATE TRAINING PROGRAMS FOR PHYSICIANS AND DENTISTS

Appropriation. (a) There are authorized to be appropriated $7,500,000 for the fiscal year ending June 30, 1973, and $15,000,000 for the fiscal year ending June 30, 1974, for grants under subsection (b).

(b) (1) The Secretary shall make annual grants in accordance with this section to—

(A) public or nonprofit private schools of medicine, osteopathy, or dentistry, which are accredited as provided in section 721(b)(1), and which have approved applications, and

(B) public or nonprofit private hospitals which are not affiliated with an accredited school of medicine, osteopathy, or dentistry, and which have approved applications,

to assist in meeting the educational costs of the first three years of full-time approved graduate training programs in the area of primary care or in any other area of health care (designated under subsection (c)(3)(B)) in which there is a shortage of qualified physicians or dentists.

(2) The amount of a grant under this subsection for any fiscal year to any school or hospital shall be equal to $3,000 for each physician or dentist enrolled in a graduate training program (A) described in paragraph (1) of this subsection, and (B) in the case of a grant to a school, conducted in clinical facilities of such schools or with which such school has a written agreement of affiliation, or, in the case of a grant to a hospital, conducted in such hospital; except that if the total of the grants to be made under this subsection for any fiscal year to schools and hospitals with approved applications exceeds the amounts appropriated under subsection (a) for such grants, the amount of the grant for that fiscal year to each such school or hospital shall be an amount which bears the same ratio to the amount determined for the school or hospital for that fiscal year under the preceding sentence as the total of the amounts appropriated under subsection (a) for that fiscal year bears to the amount required to make grants to each school in accordance with such sentence.

(c) (1) The Secretary may from time to time set dates (not earlier than the fiscal year preceding the year for which a grant is sought) by which applicants for grants under subsection (b) for any fiscal year must be filed.

(2) A grant under subsection (b) may be made only if the application therefor—

(A) is approved by the Secretary upon his determination that the applicant meets the eligibility conditions set forth in paragraph (1) of such subsection;

(B) contains a specific program or programs which such applicant has undertaken to encourage physicians and dentists to enroll
in graduate training programs described in paragraph (1) of this subsection;

"(C) contains or is supported by assurances that such applicant will increase the number of graduate training positions open to physicians and dentists in such graduate training programs;

"(D) provides for such fiscal control and accounting procedures, and access to the records of the applicant, as the Secretary may require to assure proper disbursement of and accounting for any such grant;

"(E) contains a statement in such detail as the Secretary may determine necessary, describing the manner in which any grant made under subsection (b) will be applied to meet the educational costs of the graduate training program for which the grant is made, including any payments from a grant proposed to be made by an applicant which is a school to any clinical facility which participates in such training program under a written agreement of affiliation with the applicant and which shares in the payment of the educational costs of such program; and

"(F) contains such additional information as the Secretary may require to make the determinations required of him under this section, and such assurances as he may find necessary.

"(3) The Secretary-

"(A) shall not approve or disapprove any application for a grant under subsection (b) except after consultation with the National Advisory Council on Health Professions Education;

"(B) shall define in consultation with such Council, those health care fields included within the term 'primary health care' and shall designate any other areas of health care in which there is a shortage of qualified physicians and dentists; and

"(C) shall, on an annual basis, establish guidelines specifying such absolute or percentage increases in the numbers of physicians or dentists receiving full-time graduate training which any applicant receiving a grant under subsection (b) as may be required to meet as a condition of such grant.